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Abstract-In this paper. an advanced formulation of time-domain Boundary Element Method
(BEM) for linear elastodynamics is used to study a number of problems involving wave propagation
through half-space as well as multi-layered soils. Thealgorithm incorporates isoparametric quadratic
elements which facilitate proper modelling of problem geometry and can represent the field variables
in dynamic problems very accurately, which are very often wavy in nature. Also higher order
temporal variation of functions is introduced. Improved techniques are employed for the accurate
evaluation of both the singular and non-singular spatial integrals. Most importantly, this for­
mulation incorporates simpler and better behaved kernels compared to those that have appeared
in the recent BEM literature by the present and other previous researchers. With all these new and
efficient features the present formulation is superior to the existing ones and as such represents a
very effective tool for solving 20 transient wave propagation problems. especially in infinite and
semi-infinite domains where other numerical methods have considerable difficulty in producing
accurate solutions.

INTROOUCfION

Propagation of elastic waves through half-space or layered half-space is of considerable
interest to engineers, geologists and seismologists. Lacking any analytical method to treat
such problems, resort has been made to various numerical techniques such as the Finite
Element Method (FEM), Boundary Element Method (BEM) etc. The Finite Element
Method is generally very effective for problems with complex geometries and material
properties. However, it has a disadvantage when the problem involves a semi-infinite or
infinite domain because of its difficulty in modelling such domains. The Boundary Element
Method, on the other hand, with its inherent ability to satisfy the radiation condition, does
not need modelling ofthe far field and as such is extremely suitable for this class ofproblems.
Besides, the reduction of problem dimensionality and overall increased numerical accuracy
(Banerjee and Butterfield, 1981) are the other advantages.

Most of the earlier work on transient wave propagation by BEM involved transform
domain formulations in conjunction with a numerical inversion scheme. For example, Cruse
and Rizzo (1968) studied two-dimensional problems of elastic half-plane under transient
load, Niwa et al. (1915) solved the problem of transient wave scattering by cavities of
arbitrary shapes due to the passage of travelling waves, and recently, Ahmad and Banerjee
(1988) investigated a number of 2D wave-propagation problems using an advanced algo­
rithm of Laplace-domain transient BEM.

Direct time-domain BEM formulation for 2D transient dynamic problems started only
recently with the works of Mansur (1983) and Antes (1985). However, the accuracy of
their formulation suffers from the following: mathematical complexity resulting from the
treatment of Heaviside functions present in the kernel functions, simplified assumptions of
constant variation of spatial variables, modelling of boundary geometry by using straight
line segments, inadequate treatment of edges and comers, etc. Nevertheless, these are
pioneering first-generation BEM implementation in 2D transient dynamics.

The approach of modelling the boundary geometry by straight line segments and
assuming the field variables to be constant within a segment may be justified for very simple
problems. But for real problems with corners and edges and/or curvilinear geometry, higher
order elements are needed for proper modelling. Moreover, for dynamic problems, where
field variables are usually wavy in nature, higher order variation of the field quantities needs
to be incorporated for accurate results.
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The present algorithm offers a simplified formulation for time-domain BEM together
with isoparametric quadratic elements. This implementation has the capability of solving
problems with multiple modelling regions (up to 15). The singular integral involving the
traction kernel is evaluated using a rigid body technique incorporating the corresponding
elastostatic kernel. The singular and non-singular integrals are evaluated using a scheme
with intelligent subsegmentation and optimum Gauss points which seem to improve
numerical accuracy. Additionally, some of the terms in the convoluted boundary kernels
have been transformed to reduce the apparent singularity at the wave front and are
improvements over the earlier work ofIsrail and Banerjee (1989).

As stated earlier, a number of wave propagation problems have been studied. These
involve generation of Rayleigh waves in an elastic half-space, Love waves in layered soil,
vibration isolation using open and infilled trenches, and surface disturbances due to an
underground explosion in a multi-layered soil. Each of these problems studied has con­
siderable practical significance. Moreover, there are few numerical methods capable of
solving this type of problem involving semi-infinite domains with sufficient accuracy. For
example, it is well known that it is difficult to show Rayleigh waves in an elastic half-plane
using any numerical method. Demonstration of the ability to solve a class of such complex
wave propagation problems is the essence of this paper.

TIME-DOMAIN BEM FORMULATION

The time-domain boundary integral equation can be derived by combining the fun­
damental point-force solution of the governing differential equation of motion with the
actual solution state via the use of Graffi's (1947) dynamic reciprocal theorem and is as
follows:

where Gjj(x, T;~, r) is Stokes' solution in 2D and represents the displacements at a point x
at time T due to a unit point force applied at ~ at a preceding time r. It has the following
properties:

(i) causality: Gij(x, T;~, r) = 0 where c2(T- r) < Ix - ~I, i.e. the contribution due
to each type of wave is null if the wave has not reached the field point;

(ii) reciprocity: Gij(x, T;~, r) = Gij(~' - r; x, - T);
(iii) time-translation: Gjj(x, T + t, ;~, r+ t I) = Gij(x, T;~, r);
(iv) symmetry: Gij(x, T;~, r) = Gji(x, T;~, r).

F;j(x, T;~, r) is the traction kernel obtained from the Gij kernel through the proper math­
ematical process by taking care of the causality of the waves (Israil and Banerjee, 1989)
and is different from and simpler than those obtained by Mansur (1983).

cij(~) is the well-known discontinuity term and assumes the following values:

(i) bi; for ~ within the volume V of the body;
(ii) O.5bij for ~ on a smooth surface S; and

(iii) 0 for ~ outside the volume Vand surface S.

In eqn (I), contributions due to the initial conditions are neglected. In this implicit
time-domain formulation, the response at time T is obtained by taking into account the
history of the field variables up to and including time T.

NUMERICAL IMPLEMENTATION

For numerical implementation of eqn (I), discretizations in both time and space are
required. The temporal functions are simple enough to carry out the time integrations
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analytically while the spatial integrations are to be treated numerically. The salient features
of the temporal and spatial integrations are outlined below.

(a) Temporal integration
The time axis is divided into N equal steps so that T = NIiT. Both linear and mixed

(described later) temporal variations of the functions are incorporated.

(i) Linear variation. The field variables are assumed to vary linearly during a time step
and can be expressed as :

(2)

where};(X, 't) stands for tractions or displacements and M I('t) and J!1('t) are linear temporal
shape functions, given by:

where the subscripts 1and 2 refer to the forward and backward temporal nodes, respectively,
during a time step.

With the linear variation of functions described above, eqn (I) takes the form :

Cij(e)u;,(e) = t1([G~~n+ I +Gt;n]f;'(x)-[FJ~n+ I +F;);n]u7(x»)dS(x) (3)
n= I S

where G~~n+ I, Ft~n+ I etc. are the convoluted kernels which can be found in Israil and
Banerjee (1989).

In evaluating the convoluted Gij and Fij kernels, the computational effort can be greatly
reduced by making use of the time-translation property of the kernels. That is, at each time
step only the effect of the dynamic history of the first time interval on the current time node
needs to be evaluated, i.e. at each time step, the analytical time integration has to be carried
only for n = 1. However, the convoluted Fij kernels contain terms that sometimes cause
difficulty in numerical integration especially for a mesh with widely varying element lengths.
But, when kernels are combined as shown in eqn (3), those terms cancel each other and
result in well-behaved functions. This new form of the kernels is presented below:

GJ. +GJ; I = _1_ t 4[Oji [N cosh-I (CmNliT)_2(N_I)COSh-1 {Cm(N-I)liT}
2rrp m_ I Cm 2 r r

+(N-2)cosh- 1 {Cm(N~2)liT}J+(_l)m!(<5 ji -2r.ir)(~J[N 2j N2-Cm~TJ
-2(N-l)2 j(N-I)2-(_r)2 +(N-2)2j(N-2)2- (_r)1J

~liT ~liT

-(_l)m!(<5 j j -2r,jr)[{N2_ Cm~T)7/2
:-2{(N-I)2- (c:irJf2

+ {(N-2)2- Cm~TJf2]_< _l)m(<5ij<52m -r,;r)[j N 2_ c.m~TJ
(4)
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+fiN - 2)2 - C.m~TJJ-(-l)m A 2 ( ArTJ[ {N
2

_ Cm~T)7 2

-2{(N_1)2 - C.m~TJr 2 + {(N _2)2 - c.m:TYF2JJ (5)

where

;. Or
A I = - nit! +2r"r.J~

J1. en

In expressions (4) and (5) the time-related terms are always non-negative because of
the causality property of the waves.

These expressions also reduce to the corresponding elastostatic kernels at a large time
step. The pertinent algebra is similar to that shown in Israil and Banerjee (1989).

(ii) Mixed variation. For problems where the traction boundary condition is applied
as a sudden jump, a mixed kind of variation produces better results. In this formulation,
the traction is assumed to remain constant while the displacement is taken to be linear
during a time step. Thus, the Gil and F;j kernels are the same as those corresponding
to constant and linear variation, respectively. However, for the sake of convenience of
housekeeping one-half of the time~convolutedGij kernel is assigned to each of the two local
time nodes and after proper condensation the expression corresponding to eqn (4) is:

.V,' ,v-I __1 ~ ~[(jij[ h- I (CmND.T)_ h_I{Cm(N-2)D.T}]
GiJ +G i;, - 4 L. 2 2 cos cos

I - 1tp m= I cm r r

+( -l)m!«(jij-2r'ir,)('m~Tf[NJN2
_ Cm~TJ

-(N-2)J(N-2)2-Cm~TJ]J. (6)

The convoluted Fij kernels are the same as given by (5). The rest of the time-stepping
scheme is similar to the linear formulation.

(b) Spatial integration
(i) Representation ofgeometry andfunctions. Using isoparametric quadratic elements,

the coordinates and the functions (displacements and tractions) at any point over an element
can be expressed in terms of the nodal values as :

X, = N,(l1)X;~

Ui = N,(l1)Ui ,



where

and
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i = 1,2 for 20

IX = 1,2,3 for a quadratic element

N.(I'/) are the shape functions in the intrinsic coordinates (1'/) of the element.
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(ii) Discretizedform ofBEM equation. After the spatial discretization process described
above, eqn (3) is transformed into:

Cij(e)ur(~) = f t [t T'llt P[G~~n+ I +G~;n]NIt(,J)IJI dl'/
n= I m= I x= I Jo

-t U'k (' [F~~n+ I +F~;n]NIt(I'/)IJI dl'/] (7).-1 Jo

where M is the total number of boundary elements and IJI is the Jacobian of the trans­
formation.

(iii) Evaluation of the singular integrals. The integral involving fiji kernels has the
same type and order of singularity as the corresponding elastostatic kernel during the first
time step and it is evaluated in the following way:

(8)

where cij is the jump term, N I is the shape function at the singular node and S I is the length
of the singular element. The integral is the Cauchy Principal Value (CPV).

Similarly, for a static problem,

D~ = Cij+ ( Ff/ticNI dS.
JSI

From eqns (8) and (9), one can write:

D~ can be evaluated using the well-known technique of rigid body motions, i.e.

(9)

(10)

(11)

The second integral in eqn (10) is non-singular and hence Dij can be determined from
that equation without much difficulty.

It should be mentioned here that for the evaluation of D~ from eqn (11), the body
must have a closed boundary. Thus for half-plane problems, the region of interest must be
enclosed with fictitious boundary elements known as "enclosing elements". For a detailed
discussion, interested readers are referred to the paper by Ahmad and Banerjee (1988).
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The singularity of the transient Gil, kernel is a weak one and hence its numerical
evaluation does not pose any special difficulty. In general, the spatial variation of the kernels
is not smooth and hence an integration scheme using intelligent subsegmentations and
optimum Gauss points per subsegment is employed for accurate evaluation of both the
singular and non-singular integrals.

(iv) Multi-region. One of the important features of the present algorithm is its ability
to solve problems with multiply-connected regions. This is accomplished by formulating
the BEM system of equations for each region independently and then assembling them
together by satisfying equilibrium of tractions and compatibility of displacements across
the common interfaces. Because these equations satisfy the governing differential equation
for each region there is no residual kinetic energy imbalance at these interfaces. This multi­
region implementation can at present handle problems with up to 15 modelling regions.

(v) Solution procedure. Equation (7) can be written sequentially for each of the
boundary nodes and once both temporal and spatial integration are complete can be put
into the following matrix form:

N

L: [[G~-·n-J-I +G'i-n]{tn} - [F~-n+ I +F~-n]{un}] = {O}
n~ I

(\2)

where {t n
}, {if} etc. are the vectors ofnodal tractions and displacements, respectively, with

the superscript referring to the global time node index.
At time T, only half the boundary variables are unknown, the rest are known and so

is the past history. Equation (12) then can be rearranged to:

y

Truncated Surface

I-U--------------........!--:I:

lb~ \
! 1

I :.~=~~~~~..~~:.~~~.~~~~~ .J
I

I

(a)

p(t)

Po

21'.. time (sec.)

(b)

Fig. I. (a) Parabolic load on half-space. (b) Time history of the applied load.
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Fig. 2. Displacements at the surface ofIoaded half-space. (a) Horizontal displacement. (b) Vertical
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Fig. 3. Discretization pattern of a loaded half-space with trench.
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Fig. 4. Effect of open trench vs concrete-infilled trench on transient vibration. (a) Point A. (h) Point B.

N-l
[A1I{XN

} = [BIJ{YV
}- L ([G~-n+l+G~-n]{tn}-[F~-n+l+F~-n]{lr})

n=1

or

(13)

in which {XN} and {yN} are the vectors of the unknown and known quantities at time T
and {R N

} represents the effect of past dynamic history on the current time node.
Equation (13) can be solved for the unknown boundary values using any standard

solution procedure.

APPLICAnONS

The results obtained from a series of studies on two-dimensional wave propagation
are presented here with each problem designed to demonstrate a specific aspect. Those
include the ability of this algorithm to show Rayleigh wave generation in an elastic half­
plane, generation of Love waves in layered soils. transient vibration-isolation in a half­
plane and the study of surface disturbances due to an underground explosion in a multi­
layered soil.
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Fig. 5. Discretization of layered half-space. (a) Truncated discretization (mesh 1). (b) Extended
discretization (mesh 2).
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Since the formulation has the capability of taking advantage of symmetry in load and
geometry, this facility was exploited wherever possible in reducing the computational time
and effort. Most of the solutions are presented in a normalized form. In case of layered
media, parameters corresponding to the upper layer were used for normalization unless
otherwise mentioned.

(a) Surface displacements ofa loaded half-space
This example illustrates the generation ofRayleigh waves in a loaded half-plane, which

is known to be very difficult by any numerical method.
The analytical treatment of the problem was given by Lamb (1904). He presented the

complete solution for the vertical surface displacement but for horizontal displacement,
results were given only till the arrival of the S-wave, missing out the very important Rayleigh
wave component. Numerical treatment of this problem does not appear to exist in the
published literature.

The elastic half-space shown in Fig. la is loaded with a stress field, the spatial variation
of which is parabolic and the temporal variation is in the form of a triangular pulse (Fig.
lb). The parabolic spatial distribution is chosen to simulate a point load (line load, in 2D)
while the triangular pulse was taken to simulate a delta pulse in time. Because of spatial
symmetry, only one-half of the problem geometry is modelled using 44 quadratic elements.
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Fig. 6. (a) Effect of truncation on vertical displacement at point Q (x/b = 15). (b) Effect of time
step on vertical displacement at the same location.

The discretization is extended up to a distance of 22b, where b is the half-width of the loaded
region. The time step is chosen such that during one step the P-wave travels over one-half
of the element.

The surface displacements obtained by the present formulation at different locations
are presented in Fig. 2. The normalization parameters are: x, the distance of the point from
the center of the loaded region; J1., the shear modulus; c, and C2, the propagational velocities
of the P- and S-wave, respectively; and Q, the magnitude of the triangular pulse (area
under the curve in Fig. lb). Notice that as the point is farther away from the loaded region
the results converge towards Lamb's solution indicating that with increasing distance the
load appears to be a point load.

(b) Vibration isolation with open and infi//ed trench
Vibration due to transient loads can be reduced by the use of a trench. In this study,

the effectiveness of an open trench as opposed to a concrete-infilled trench in attenuating
the amplitude of transient vibration is investigated.
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Fig. 7. (a) Effect of shear moduli of the layers Cfl.lJ.l2) on the vertical displacement. (b) Point P
(x/b = 5). (b) Point Q (x/b = IS).

The discretization pattern of the problem is shown in Fig. 3a. The portion of the half­
space of width 2b is subjected to a uniform stress, the time history of which is the same as
in Fig. lb. The rise-time of the load is T, = 0.5437blc2' A trench of width W =b and depth
H = 3b is located at a distance of lOb from the edge of the loaded portion. The vertical
displacements at points A(lOb, 0) and B(13b, 0) located before and after the trench, respec­
tively, are of interest here. The material properties of the soil medium and concrete are:

JlcIJl. = 34.29; v. = Vc = 0.25; pclp. = 1.37.

The results obtained using no trench, an open trench and a concrete-infilled trench are
presented in Fig. 4. For point A, the presence ofa concrete-infilled trench made no significant
difference to the response as compared to no trench. The presence of an open trench
increased the duration of high-amplitude vibration, probably due to reflection from the
trench wall. However, for point B, the open trench helped to attenuate the amplitude of
vibration significantly, while the concrete-infilled trench reduced the vibration to some
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Fig. 8. (a) Underground explosion in a two-layered soil. (b) Time history of applied internal radial
pressure on the cavity wall.

extent. Note that the arrival of the P-wave is delayed in the case of an open trench while it
arrives early in the case ofan infilled trench because the wave travels faster through concrete.

These results show that an open-trench is more effective in reducing transient vibration
than a concrete-infilled trench, at least in this example.

(c) Wave propagation through layered soil
In the real world, the soil profile is almost never a homogeneous half-space. In many

instances, it is stratified with softer layers overlying the stiffer ones. The presence of such
layers affects the wave propagation significantly. Waves emanating from the loaded surface
undergo reflection and refraction at the interface between the layers and give rise to new
types of waves such as Love waves, etc.

The present study involves a loaded two-layered soil profile as shown in Fig. 5 with
different shear moduli III and 1l2, all other properties remaining the same in the two layers.
The depth of the upper layer is H = 3b. The portion of the top surface ofwidth 2b is loaded
with the triangular pulse of Fig. lb. The rise time of the pulse is 1', = 0.5437b/C2, where C2
is the shear-wave velocity in the upper layer. Because of symmetry, only one-half of the
problem is modelled.

The effect of a truncated mesh on the surface displacements was studied using two
types of mesh pattern: one extended up to a distance of 22b (mesh 1) and the other up to
70b (mesh 2). Both the meshes are shown in Fig. 5. The study was conducted for a layered
profile with Ildll2 =0.5 and a time step of At = 0.2719b/c2' The effect of truncation on the
vertical displacement of a point Q (x/b = 15) is depicted in Fig. 6a. The results from the



Transient'wave propagation using BEM

.1lIlI...---------------------,
863

..
.Rc

I..
lil
a...
.... .1111

-;;;.......
~ ••

,--, -­, ,, ,
, ', ,

, ', \
I ..... • \

/"' /....... . \ ,:..'..'\\\
,," ......•.

5tatl"" R
Station 8
Station C

.......•....- .

.81

.R

CL..
....

-.1111 '= ""=::- ""'"=:--__~;-----J.;:;;---......l

•• .IM •• .12 .1& .2111

time <••c.)

(a)

.l!I3.-----------------------,

:::::: ~ ,'~/~<:.~ ,\
,// \<\

,'.~~;_•..-... \, \ .....

......--_..:::....:::.-_--------,-,,+\\-----1
, ....

- .. 81 &."",.---J.",.,.---"""""'---...I."".---'-'J.,-:.-"'..;:::..;;,,:-"...'::;;;,j'
~ .IM ~ .~ .~ ~

(b)

Fig. 9. Surface disturbances at various locations due to underground explosion. (a) Vertical.
(b) Horizontal.

two meshes are identical except for some insignificant differences at later times. For points
closer to the loaded region the solutions were identical while noticeable differences were
present for points very close to the truncated end. Another study was conducted to inves·
tigate the effect of the time step on the vertical response. Mesh 1 was used together with
three different time steps: At - O.5437b/C2' At = O.2719b/c2 and At - O.1359b/c2' The
results obtained at the same location are presented in Fig. 6b. It is observed that the solutions
obtained using the two smaller time steps are almost identical, indicating convergence of
the results. Mesh I and time step At =0.2719b/c2 were chosen for further study.

Three different layered profiles were studied with the ratios of shear moduli:
P..!P,2 - 1.0,0.5 and 0.25. The vertical displacements at the locations P (x/b - 5) and Q
(x/b - 15) are presented in Fig. 7. As the bottom layer becomes stiffer, more waves are
reflected from the interface and generate Love waves in the top layer, and thus the surface
displacement become oscillatory. Moreover, waves travel faster through the lower stiffer
medium and arrive early at a given point as compared to when the medium is softer. This
phenomenon is pronounced for distant points as can be seen in Fig. 7b.
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(d) Underground explosion in a layered soil medium
The disturbance of the soil surface due to an underground explosion is studied in this

example.
The soil profile is assumed to consist of a layered stratum overlaying a half-space. The

explosion is simulated via a sudden radial expansion ofa cylindrical cavity in the underlying
half-space. The soil profile with the various dimensions and the time history of the applied
pressure in the cavity are shown in Fig. 8. Because of symmetry, again, only one-half of
the problem geometry is modelled. Both the top surface and the interface are modelled with
15 elements each while four elements are used to discretize the cavity wall. The surface
discretization is extended up to a distance of 9a, where a = 10 is the radius of the cavity.
The various material properties are as follows:

top layer:

half-space:

J.tl = 647,200 VI = 0.35 PI = 3.25

ti2 = 1,991,150 V2 = 0.30 P2 = 2.85.

Figure 9a depicts the time history of the vertical displacements at three selected stations
A(O, 0), B(2a, 0) and C(4a, 0) on the free surface. It is observed that the maximum amplitude
of vertical disturbance attenuates with distance, as expected. The corresponding results for
horizontal displacements at stations Band C are presented in Fig. 9b. It is interesting to
note that the maximum horizontal displacement at B is comparable to its vertical dis­
turbance while for point C, the peak horizontal amplitude is quite high as compared to the
corresponding vertical displacement.

CONCLUSION

An advanced algorithm for 2D transient dynamics based on direct time-domain bound­
ary element formulation has been used to study a series of problems invohing transient
wave propagation. Higher order spatial variations (quadratic) as well as temporal variations
(linear, mixed) are incorporated for proper modelling and accurate analysis of dynamic
problems. Also, simpler and better behaved boundary kernels have been developed and
implemented. The problems studied such as transient disturbances due to load applied on
the surface of a half-space or layered half-space, vibration isolation using various types of
trench and surface disturbance due to an underground explosion demonstrate the ability
of the algorithm to handle complicated practical problems.
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